Feature Selection for Multi-label Document Based on Wrapper Approach through Class Association Rules
نویسندگان
چکیده
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملEfficient Multi-Label Feature Selection Using Entropy-Based Label Selection
Abstract: Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computati...
متن کاملA distributed wrapper approach for feature selection
In recent years, distributed learning has been the focus of much attention due to the proliferation of big databases, usually distributed. In this context, machine learning can take advantage of feature selection methods to deal with these datasets of high dimensionality. However, the great majority of current feature selection algorithms are designed for centralized learning. To confront the p...
متن کاملReliefF-based Multi-label Feature Selection
In recent years, multi-label learning has been used to deal with data attributed to multiple labels simultaneously and has been increasingly applied to various applications. As many other machine learning tasks, multi-label learning also suffers from the curse of dimensionality; so extracting good features using multiple labels of the datasets becomes an important step prior to classification. ...
متن کاملWrapper Based Feature Selection for Ct Image
Diagnostic imaging is invaluable. Magnetic Resonance Imaging (MRI), digital mammography, Computed Tomography (CT), and others ensure effective noninvasive mapping of a subject’s anatomy, and increased normal and diseased anatomy knowledge for medical research in addition to being a critical component in diagnosis and treatment. In this work various feature selection algorithms are investigated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Advanced Science, Engineering and Information Technology
سال: 2017
ISSN: 2460-6952,2088-5334
DOI: 10.18517/ijaseit.7.2.1040